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1. Introduction. If f(x) is of bounded variation in -1 < x _ I, then we can 
expand f(x) in a convergent series of Chebyshev polynomials T.(x) as 

00 

(1) f(x) = Z'a.T.(x), 
n=O 

where Tn(x) = cos (n arc cos x), and ' denotes a sum whose first term is halved. 
In this paper we shall consider two problems. The first concerns finding an asymp- 
totic estimate for large n of the coefficients an when f(z) (z = x + iy) is an integral 
function. This problem has been previously considered by one of us [1] for more 
general f(z). In particular, asymptotic estimates were found for an in the cases 
when f(z) has (1) simple poles, (2) a pole of order k, and (3) branch points. For 
the case when f(z) is an integral function, only an upper bound for 1 a. I was given. 
This result is not considered to be very satisfactory. In Sections 2 and 3, we shall 
consider this problem again, using the method of steepest descents to give an asymp- 
totic estimate for an . 

In the second part of the paper (Sections 4-6), we shall consider the Chebyshev 
expansion of f(x) given its Laplace transform f(p). In the use of Chebyshev series 
for the numerical solution of differential and integral equations (see, for example, 
[21 and [3]), it is convenient to have an a priori estimate for the coefficients an in 
the Chebyshev expansion of the unknown function. In certain cases it is possible tb 
evaluate the Laplace transform of the solution, and it is then desirable to estimate an 
directly from this transform. We shall obtain an expression for an in terms of f(p) 
which can be used either for asymptotic evaluation or, if f(p) is sufficiently simple, 
to determine an explicitly. In Section 6 we shall give examples of expansions which 
have been obtained in this manner. 

2. Integral Functions. It has been shown in [1], that the coefficient an can be 
expressed as a contour integral, 

(2) an = f f(Z2-1).(z + d(Z2 - 1)) for n > 0O 

where C is any contour enclosing the interval -1 < x < 1, on and within which f(z) 
is regular. When f(z) is an integral function, the contour C can be displaced freely 
in the complex plane, provided only that it never crosses the branch points ? 1. 
This suggests the use of the method of steepest descents in order to estimate an, 
where the contour is deformed to pass through the saddle points of the integrand 
(see, for example, [4]). If the integrand is written as exp it(z), we find that a suit- 
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able portion of the integral passing through a saddle point (where & ( 0) = 0) is 
asymptotically equal to 

(3) -\/(27 )a expD)-/2 [(t 

where a is a complex number defined by 

(4) a 1, argca -= -arg1 (a). 

From equation (2), we write 

(5) I(z) = logf(z) - log (Z2 - 1 -nlog (z + V(Z2 - 1)), 

and the saddle point r is given by 

(6) / ?_ r + n (6) 
~~f(r) r2'- 1 (?2-O 1)^ 

(There may, of course, be several values of r satisfying this equation.) Differentiat- 
ing equation (5) a second time gives 

(7) #t(rf)f-., _ 2+ _ + 
2 + nr (7)[ 1f(r)2 (2- 1)2 

+ 
__2 1)3/2_ 

If it is possible to choose the contour C so that the contribution of the remainder of 
the integral is negligible when n is large, then we have 

(8) an t 
.4/\(/)((?2 

- 1) I (n) ]'(+ (2 - 

for large n, or a sum of such expressions if the contour passes through several saddle 
points. This is the required asymptotic formula. 

For the purposes of this formula, it is not necessary to solve equation (6) exactly. 
A sufficiently good approximation to r is obtained, for large n, if we omit the first 
term of the right-hand side of equation (6) and solve the simpler equation 

(9) /(2 _1 ) ff (r) =n 

In the next section, we shall illustrate the method by considering the functions 
exp (kx) and erf (kx). 

3. Two Examples. Let us considc. first the 1unction exp (kx), where k > 0. 
We assume that n is large compared with k. From equation (9) we have 

= v/(1 + n2/k2), and from (7), +"(?) k2/n for n/k large. With this value of 
6" (c), equation (4) gives immediately that a = i. Finally, 

f(? ) = exp (V\(k2 + n 

and 
(?+ V(?2 _ 1))n k-n( + /(n 2 + k12))n 

We choose, as our contour C, a circle with centre at the origin and of radius ?. Then 
equation (8) gives 

(10) an kn(n + V\/(n2 + k2) exp (\/(n2 + k2)). 
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If kO/n2 is small, then on using Stirling's formula, this simplifies to 

k k2/4n 

For our second example, we consider the function erf (kx) = (2/V/())r 
fx e-t2 dt. We find that there are now two saddle points at v = Eip, where p iS 
very nearly the positive solution of the equation 

(12) p/(p2 + 1) = n/2k12. 

This is obtained from equation (9), and using the relation that 

(13) e t e dt + + for large x. 

Let us consider first the point , = +ip. Writing p sinh,B, equation (12) gives 

(14) sinh 2# = n/k2, 

and from equations (7), (13) and (14) we obtain 

-2k2(1 + tanh 2). 

Furthermore, 

ri + V(r12-1) = iexp (i3), 

and 

erf (krl) i exp ((n/2) tanh B) 
(\/7r)k sinh # 

We choose, as our contour C, a circle of radius p and centre at the origin. Since this 
contour is described in the positive direction, we choose a, =-1. If a.i, j = 1, 2, 
denotes the contribution to a. of the saddle point rj, then we find from equation 

(8) that 

(15) a 2 exp [(n/2) (tanh A-2,B)] 1 
irn (1 +tanh2fl)"12 i- 

A similar result is found for an(2), but with in-' written in place of 1/in'-. Combining 
the two results we find, when n is odd ( = 2m + 1 ), 

(16) a2m+,, - 4(-1)m exp [(m + (1/2)) (tanh A - 2A)] 
7r(2m + 1)(1 + tanh2 ,3)1I2 

where 

sinh 2f = (2m + 1)/k2. 

When n is even (=2m), a2m _ 0. Equation (16) may be simplified if we assume 
that 2m + 1 is large compared with k2, to give 

(2r\/2) (? 1 ) 2 k 1)) -k212 (17) a2m-rL -r (2m + 1) t2(2mn + 1) e 
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TABLE 1 

The coefficients a2m+l 

m Asymptotic Actual 

0 +1.25290 +1.25284 
7 -0.002889 -0.002881 

14 +0.065664 +0.065654 
21 -0.0117304 -0.0117298 
28 +0.0161232 +0.0161232 

The asymptotic values of a2m+l as given by equation (16), and the actual values as 
given by Clenshaw [5], for k = 4, are shown in Table 1 for m = 0(7)28. The rela- 
tive error is less than 0.3% for all m. 

4. Laplace Transform; Expansion in T *(x). We now turn to our second 
problem, the determination of the coefficients in the Chebyshev series expansion of 
a function, given its Laplace transform f(p). As a preliminary step we consider the 
expansion of f(x) in a series of shifted Chebyshev polynomials Tn*(x), 

00 

(18) f(x) = >SAnTn*(x), 0 < x ? 1, 
n=O 

where Tn*(x) = cos no, 2x - 1 = cos O. 
The Laplace transform f(p) of f(x) is defined by 

(19) f(p) = e ePxf(x) dx. 

Under suitable regularity conditions the well-known inversion formula gives 

(20) f(x) = 2?rilimrn e"f(p) dp, 

where the real number c is chosen so that all singularities of f(p) are to the left of 
the line of integration. The inversion formula is valid for x > 0 and, in particular, 
for x in the interval (0, 1]. Now, for 0 < x < 1, 

00 

(21) ePX = 2 ZePI2In(p/2)Tn*(x), 
n-0 

where In denotes the modified Bessel function of the first kind of order n. Substitut- 
ing equations (18) and (21) into (20), and equating coefficients, we have at once 
that 

c+i# 

(22) An= lim e %2In(p/2)f(p) dp for n _ 0. 
7ri 0--C c-id 

Depending on the form of 1(p), the integral in equation (22) may be evaluated 
either exactly or asymptotically for large n, by suitably displacing the path of 
integration. The following is a useful result. 
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THEOREM 1. Suppose that f(p) is tniform in the left half-plane L, = 

{p IRep _ c} and that 

(23) limnp"12J(p 0 

when p --* in L, . 
Then A. in equation (18) is equal to the sum of residues of 

(24) O(p) = 2e p2In(p/2)f(p) 

in L.. 
Proof. Consider the integral 

+(P) dp + r ?(p) dp) 

where +(p) is defined in equation (24), and rF is the semicircle 

p2 2- -2 

We have on rP , for large A (see reference [6], p. 203), 

| ep"2In(p/2)I -I 7rp l-1/2 1 ep + i(-1)n< I I rp 1l-/2(ec-#coe + 1). 

Hence, by equation (23), 

f (p) dp 
< 

7r-12 Max Ipl/2f(p) 1 (ec + 1)- 0 as f oo, 

and the result follows. 
As an example, consider f(x) = ek2X for which f(p = (p - k2f'. Theorem 1 

gives immediately that 

A= 2ek2 12n (k2/2). 

If we write x = 2, then, since Tn*(2) = T2f(t), we obtain 
00 

(25) ek2 2 = 2 Ej' ek2/2In(k2/2)T2n(t) 
n=o 

valid for-1 < t < 1. 
In the next section we shall consider the more interesting problem of expansions 

in series of ordinary Chebyshev polynomials Tn(x). 

5. Laplace Transfonn; Expansion in Tn(x). To obtain a formula analogous 
to equation (22) for the coefficients an defined in equation (1), we note that the 
inversion integral in equation (20) gives 0 for x < 0 and :f(O) for x = 0. To ac- 
count for negative values of x, we define two functions fi(x) and f2(x) as follows: 

(fx), x>O, ff(x), x < O, 

(26) fi(x) = 4f(0), x = 0, f2(X) = 2f(O), X = 0, 

Lo, x<O, <o, x > O. 

Then, for all real x, we have 

(27) f(x) =fl(x) +f2(x). 
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Define 

fi(p) = f e-pf(x) dx = 4{f(x) }. 
(28) 0 

f2(P) = e-Pxf(-x) dx = jf(-x)}. 

Then by the inversion theorem (equation (20)), we have 

1 "1+'I' (29) fi(x) = 1 lim eP fl(p) dp, 
2 7ri #- >o 00 c 

and 

1 C2+i# 

(30) f2(-x) = lim eP2(p) dp, 
27ri -oo c2-i.a 

where cl, c2 are chosen so that all singularities of fi(p), i = 1, 2, are to the left of the 
vertical line through ci . 

Writing x for -x and replacing p by -p in equation (30) we have, for x < 0, 

1 r-C2+i# 

(31) f2(x) = .Llim ePxj2(-p) dp. 
27ri -o >0J c2-if 

Thus all singularities of f2(-p) are to the right of the line through -C2 . Com- 
bining these results we have, for all x, 

r e+i# -C2+it 

(32) f(x) lim ePx i(p) dp + PxY2 p) dp 
27ri #-->O 1-ift C2-ift 

In particular, if, for the range -1 < x < 1, f(x) is given by equation (1), then, 
since ([6], p. 369) 

00 

(33) ePx = 2 Y' In(p)Tn(x), 
n=O 

we have on substituting equations (1) and (33) into equation (32), the required 
result, 

1 r c+i# -C2+i # 

(34) an = 1 lim In(p)fi(p) dp + In(p)f2(-p) dp} 
7rt #-->00 C1-io C2-iC 

wherefi(p) = S{f(x)} and f2(p) = C{f(-x)}. 
In the next section we shall illustrate the evaluation of these line integrals by 

means of a few examples. 

6. Examples. A simple illustration is given by considering the function 
f(x) = eax where a > 0. Then fh(p) = l/(p - a) and f2(p) = -l/(p - a). The 
constants c1, C2 have to be chosen so that c1 > a and C2 < a. Equation (34) gives 

(35) an 1lim f1 + JC2-i} '() dp. 
7r1 0 ? C1-t J2+?i p-a 
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The integrand tends to 0 when 3 -i oo in p = c + i3, C2 < c < cl . Hence, by the 
theorem of residues, an = 21(a), as required. 

A rather more interesting example is given by the function f(x) = (1/x)Jl(kx) 
which has been tabulated by Clenshaw [5] for k = 8. We have fi(p) = (1/k) . 

(V/(p2 + k2) - p) and f2(-p) = -fi(p). As before, the integrand tends to 0 
when 1 + oo in p = c + i3 and, hence, 

an= ki f In(p)(V(p2 + k2) - p)p, 

where C is any contour enclosing the slit from - ik to +ik. By displacing the contour 
to the slit we find that 

(36) an = 2fL J.(y)V(k2 _ y2) dy. 

This integral is zero whel n is odd and, when n is even (-2m), we have 

(37) ? m = 4( 51)f Jo-J2 (y _ y2) dy. 

Writing y = k cos 0 and using the result ([6], p. 150) that 

(38) Jh(z)J,(z) = - j J,+,(2z cos 0) cos ( - v)@ do, 

we find that 

(39) a2m = (1 )k{Jm2(k/2) -Jm_l(k/2)Jm+i(k/2)}. 

This result does not seem to have appeared in the literature before. 
A similar analysis, using the same contour as before, can be made for the function 

f(x) = (1/x) sin kx. Nowfi(p) = arc tan (k/p) = (1/2i) log ((p + ik)/(p - ik)) 
and f2(-p) = -fi(p). We find 

k 00 

(40) a2m = 2(-l)m J J2m(y) dy = 4(-1)m Z J2m+2r+l(k), 
Jo ~~~~~~r=O 

and a2m+i = 0. 

As a further example, we consider the function ek2x2. Then 

f ( p ) = or e_2 /4k2(1 - erf (p/2k)), 2a 

f2 (P) = Y?eP24ke(1 + erf (p/2k)). 

Neither fi(p) nor f2( -p) has singularities and we can choose ci c2 0. Equation 
(34) gives 

(42) 2 linm L I ( p) eP2I4k2 dp. 
7r?1 132k j 
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When n is odd, this gives an = 0 and, when n is even (=2m), we find 

(43) a2m 2(k1) f Jsm(y)e~'21* dy 

2 - 1) mk2 12I (k2/2) 

using the result given in [6], p. 394. 
Finally, we can proceed in an exactly analogous way for the function erf (kx). 

Then, 
f'(p) = (1/p)eP2/4k2[1 - erf (p/2k)]. 

Since erf (kx) is an odd function, 

f2(p) = -fi(p) 

and 
f2(-p) = (l/p)ep21412[1 + erf (p/2k)]. 

Proceeding as for ek x, we find 

(44) a. = ~~2. limn iL In p) eV2/4k2 dp. 
7r7 5-*oo -i i p 

Writing p = iy, we find 

(45) an 2(-1) L Jn(y) eU2I2 dy. 
7r co y 

When n is even, a. is zero and when n is odd (=2m + 1), we have 

_ = (-1); f2 [J2m(Y) + J2m+2(y)]ey2/4k2 dy, 

on using the recurrence relation for the Bessel functions. Evaluating the integral 
gives 

(46)a2 2k(-1)mek2Is FIm(k ) + Im+i( k)1. 
'?UJ asm+i 

~(V\7) (2m + 1) L\-2/ 
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